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Abstract
We introduce an n-ary Lie algebroid canonically associated with a Nambu–
Poisson manifold. We also prove that every Nambu–Poisson bracket defined
on functions is induced by some differential operator on the exterior algebra,
and characterizes such operators. Some physical examples are presented.

PACS numbers: 0240J, 0240, 0220S

1. Introduction

In the 1970s, trying to describe the simultaneous classical dynamics of three particles as
a previous step towards a quantum statistics for the quark model, Nambu introduced a
generalization of Poisson brackets formalism that today bears his name (see [Nam 73]). The
field underwent a revitalization with the work of Takhtajan in the 1990s [Tak 94], which
showed the algebraic setting underlying Nambu’s ideas and introduced an analogue of the
Jacobi identity, the fundamental identity, allowing the connection with the theory of n-ary Lie
algebras developed by Filippov and others (see [Fil 85] and [Han-Wac 95]). In [AIP 97], further
references relating to the development of this subject can be found, along with an alternative
generalization of Poisson structures.

Recently, much work has been done in this area, showing an interesting algebraic structure
(see, for instance, [Ale-Guh 96, Gau 96, Gau 98, Mic-Vin 96, MVV 98, Nak 98, Vin-Vin 98]
and references therein). This is very interesting from both a mathematical and a physical point
of view: an algebraic formulation not only provides a more concise and elegant framework,
but also can be the source for new insights. In this direction, the notion of Leibniz algebroid
was introduced [Dal-Tak 97, ILMP 99] as a kind of analogue of the Lie algebroid associated
with a Poisson manifold. That concept of a Lie algebroid, has proved to be very useful in the
study of Poisson manifolds and dynamics (for a sample, see [Lib 96,Cou 94,Wei 98,Gra-Urb
97]), and recently has been considered for the quantization of Poisson algebras [Lan-Ram 00].
The same is to be expected in the Nambu–Poisson case (n-ary Poisson algebras), with the
appropriate generalizations.
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Thus, the main motivation for this paper comes from the question: to what extent the
constructions and properties of the Lie algebroids associated with Poisson manifolds, including
quantization, carry over to the n-ary case? This paper deals with a very first step towards
the answer, namely, the study of the canonical relation between Lie algebroids and Poisson
manifolds in the n-ary case. For this purpose, one could consider Leibniz algebroids; however,
this concept (although very interesting in itself) is not a genuine generalization of that of a
Lie algebroid: it relies upon an algebraic construction called Leibniz (or Loday) algebra
(see [Lod 93]), which is a non-commutative version of a Lie algebra. In [Gra-Mar 00] the notion
of an n-ary Lie algebroid (called a Filippov algebroid by the authors) has been introduced, and
it seems to better fit the aforementioned question.

In this paper, we construct an n-ary Lie algebroid canonically associated with a Nambu–
Poisson manifold à la Koszul (see [Kos 85]), that is to say, by using differential operators on
the (graded) exterior algebra of differential forms. An interesting advantage of this approach,
is that it allows for the possibility of characterizing the operators which generate the brackets
under consideration, this characterization being in terms of the commutator of the operator with
the exterior differential. For the case of Poisson brackets and its extension as a graded brackets
to the whole exterior algebra, such a study was made in [BMS 97], where these operators were
called Jacobi operators (adopting the terminology from [Gra 92]), and essentially the same
techniques will be used here to show that every Nambu–Poisson bracket coincides with the
bracket induced on functions by a certain differential operator on the exterior algebra, giving
its explicit form in terms of the Nambu–Poisson multivector. In the last section, some physical
examples are described.

2. Basic definitions and results

Our main tool in the study of the n-ary generalizations of Poisson manifolds and Lie algebroids,
will be the theory of differential operators on the exterior algebra of a manifold, so we collect
here the basics of this theory.

Let HomR(�(M)) be the space of R-homomorphisms of the exterior algebra F :
�(M) −→ �(M). We say that F has Z-degree |F | (sometimes with F as an exponent) if F
mapsp-forms on (p+|F |)-forms, then we writeF ∈ Hom|F |

R
(�(M)) (orF ∈ HomF

R
(�(M))).

On the space HomR(�(M))we introduce a bracket [. , .] (called a commutator) by means
of

[F,G] = F ◦G− (−1)FGG ◦ F
and it is easy to prove that this bracket turns (HomR(�(M)), [. , .]) into a graded Lie algebra.

A differential operator on �(M) of degree p and order q, is a homomorphism D ∈
Homp

R
(�(M)) such that

[[. . . [[D,µa0 ], µa1 ], . . .], µaq ] = 0

for all µai , i ∈ {0, . . . , q}, where ai ∈ �(M) and µai denotes the homomorphism
multiplication by ai, µai (b) = ai ∧ b, which has order 0 and degree |ai |, and so will often
be simply denoted ai . The space of such operators is denoted Dp

q ; examples are the insertion
operator iP ∈ D−p

p whereP ∈ �(�pTM) is ap-multivector, and the generalized Lie derivative
LP = [iP , d] ∈ D−(p−1)

p , d being the exterior differential.
A useful result states that

[Dp
q ,Dp′

q ′ ] ⊂ Dp+p′
q+q ′−1. (1)
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Also, we have that any operatorD ∈ D−q
q has the form iA, for someA ∈ �(�qTM). This

is a consequence of (1) and the fact that any operator is determined by its action on forms with
degree equal or less than the order of the operator.

The order defines a filtration on the space of all differential operators. Indeed, given
p, k ∈ Z with p > k, if D is an operator of order �k, then it is also of order �p, that is to say

{0} = D−1(M) ⊂ D0(M) ⊂ · · · ⊂ Dk(M) ⊂ Dk+1(M) ⊂ · · · .
Definition 1. Given k ∈ Z, we will call the symbol of order k of M the �(M)-module

Symbk(M) = Dk(M)

Dk−1(M)

and the space of symbols of the exterior algebra�(M) is defined as the graded�(M)-module

Symb(M) = ∪
k∈Z

Symbk(M).

Note that, if D is a differential operator of order �k, D ∈ Dk(M), then we can speak about
the symbol of order i of the operator D, that is to say,

Symbi (D) ∈ Dk(M)

Dk−1(M)
i � k.

We will need some terminology from the theory of Nambu–Poisson manifolds.
A Nambu–Poisson bracket on a manifoldM , is an n-linear mapping {. , . . . , .}: C∞(M)×

· · · × C∞(M) −→ C∞(M), satisfying:

(1) Skew-symmetry. For all fi ∈ C∞(M), (1 � i � n) and σ ∈ Sn (Sn is the symmetric
group of order n)

{f1, . . . , fn} = (−1)ε(σ ){fσ(1), . . . , fσ(n)}.
(2) The Leibniz rule. For all fi, g ∈ C∞(M), (1 � i � n)

{f1g, f2, . . . , fn} = f1{g, f2, . . . , fn} + g{f1, f2, . . . , fn}.
(3) The fundamental identity. For all fi, gj ∈ C∞(M), (1 � i � n− 1, 1 � j � n)

{f1, f2, . . . , fn−1, {g1, . . . , gn}} =
n∑

j=1

{g1, . . . , {f1, . . . , fn−1, gj }, . . . , gn}.

If {. , . . . , .} is a Nambu–Poisson bracket, it has an associated n-multivector P ∈
�(�nTM) through

P(df1 ∧ · · · ∧ dfn) = {f1, . . . , fn}
which is called the Nambu–Poisson multivector.

A Nambu–Poisson manifold is a pair (M, {. , . . . , .})where {. , . . . , .} is a Nambu–Poisson
bracket (which also can be denoted (M,P )).

A Lie (or Filippov) n-algebra structure on a vector space V , is an n-linear skew-symmetric
bracket [. , . . . , .] satisfying the generalized Jacobi identity, also called the fundamental
identity:

[v1, v2, . . . , vn−1, [u1, . . . , un]] =
n∑

j=1

[u1, . . . , [v1, . . . , vn−1, uj ], . . . , un]

for all vi, uj ∈ V, (1 � i � n− 1, 1 � j � n).
A Lie (or Filippov) n-algebroid is a vector bundle p : E −→ M equipped with

an n-bracket [. , . . . , .] on sections of E (V = �(E)) and a vector bundle morphism
q : �n−1E −→ TM over the identity on M , called the anchor map, such that:
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(1) The induced morphism on sections q : �(�n−1E) −→ �(TM) satisfies the following
relation with respect to the bracket of vector fields:

[q(X1 ∧ · · · ∧Xn−1), q(Y1 ∧ · · · ∧ Yn−1)]

=
n−1∑
i=1

q(Y1, · · · [X1, · · · , Xn−1, Yi] ∧ · · · ∧ Yn−1).

and
(2) [X1, . . . , Xn−1, f Y ] = f [X1, . . . , Xn−1, Y ] + q(X1 ∧ · · · ∧Xn−1)(f )Y

for all X1, . . . , Xn−1, Y ∈ �(E) and f ∈ C∞(M).

We will call these structures n-Lie brackets and algebroids, respectively, for short.

3. n-Lie brackets on 1-forms induced by differential operators

In [Kos 85], Koszul introduces the following notation: for D ∈ Dn (of any degree)

&n
D(a1, . . . , an) = [[. . . [D, a1], . . .], an](1). (2)

In fact, he considers that expression for D ∈ D−1
2 such that D(1) = 0, and uses it in order

to define a bracket on �(M) as

[[a, b]]D = (−1)a&2
D(a, b) = (−1)a[[D, a], b](1)

= (−1)aD(ab)− (−1)aD(a)b − (−1)a(D+1)aD(b). (3)

Koszul also studies under what conditions the bracket [[., .]]D is a graded Lie one, and
obtains the necessary and sufficient condition

D2 ∈ D2

when a priori D2 lies in D3. This idea can be followed on to construct new kinds of brackets
from a differential operator.

Remark 2. In the following, we will only consider operators such that D(1) = 0.

By a direct calculation involving only the Jacobi identity and the skew symmetry for the
commutator [., .], it can be shown that, for any D ∈ DD

n

&n
D(a1, . . . , an−1,&

n
D(b1, . . . , bn))

= (−1)(D+
∑n−1

i=1 ai )D&n
D(&

n
D(a1, . . . , an−1, b1), b2, . . . , bn)

+(−1)(D+
∑n−1

i=1 ai )(D+b1)&n
D(b1,&

n
D(a1, . . . , an−1, b2), b3, . . . , bn)

+ · · · + (−1)
(D+

∑n−1
i=1 ai )(D+

∑n−1
j=1 bj )

&n
D(b1, . . . , bn−1,&

n
D(a1, . . . , an−1, bn))

+[[. . . [[[[. . . [D, a1], . . .], . . .], an−1],D], b1], . . .], bn](1). (4)

If we want to induce a n-ary bracket on 1-forms, we need an operator of type D ∈
D−(n−1)
n (�(M)) (so acting on n 1-forms gives a 1-form, recall (1)). In this case, with

ai, bj ∈ �1(M), (4) reduces to

&n
D(a1, . . . , an−1,&

n
D(b1, . . . , bn))

= (−1)(D+n−1)D&n
D(&

n
D(a1, . . . , an−1, b1), b2, . . . , bn)

+(−1)(D+n−1)(D+1)&n
D(b1,&

n
D(a1, . . . , an−1, b2), b3, . . . , bn)

+ · · · + (−1)
(D+n−1)(D+n−1)

&n
D(b1, . . . , bn−1,&

n
D(a1, . . . , an−1, bn))

+[[. . . [[[[. . . [D, a1], . . .], . . .], an−1],D], b1], . . .], bn](1)
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and, as the operator degree is |D| = −(n− 1), to

&n
D(a1, . . . , an−1,&

n
D(b1, . . . , bn))

= &n
D(&

n
D(a1, . . . , an−1, b1), b2, . . . , bn)

+&n
D(b1,&

n
D(a1, . . . , an−1, b2), b3, . . . , bn)

+ · · · + &n
D(b1, . . . , bn−1,&

n
D(a1, . . . , an−1, bn))

+[[. . . [[[[. . . [D, a1], . . .], . . .], an−1],D], b1], . . .], bn](1). (5)

Taking into account that (for odd degree operators) [[D, a],D] = 1
2 [D2, a], we see that

this expression generalizes the one given by Koszul (in lemma 1.5 of [Kos 85]) for the Jacobi
Identity when only 1-forms are considered:

&2
D(a1,&

2
D(a2, a3)) = &2

D(&
2
D(a1, a2), a3) + &2

D(a2,&
2
D(a1, a3)) + 1

2&
3
D2(a1, a2, a3).

Thus, we are led to consider the following definition for an n-ary bracket on 1-forms,
induced by an operator D ∈ D−(n−1)

n .

Definition 3. For D ∈ D−(n−1)
n and ai ∈ �1(M), i ∈ {i, . . . , n},

[[a1, . . . , an]]D = &n
D(a1, . . . , an) = [[. . . [D, a1], . . .], an](1). (6)

Proposition 4. Let [[. , . . . , .]]D the bracket on 1-forms induced by an operator D ∈ D−(n−1)
n .

Then, it has the following properties:

(i) R-linearity on each argument;

(ii) skew-symmetry.

Proof.

(i) Is a direct consequence of the corresponding property for the bracket on HomR(�(M)).

(ii) Here we use that, for any F ∈ HomR(�(M)), and a ∈ �|a|(M), b ∈ �|b|(M),

[[F, a], b] = (−1)ab[[F, b], a]

and the statement follows from a straightforward computation. �

In order to construct an n-Lie bracket on 1-forms, we need a fundamental identity. A
glance at (5) tells us we are almost done, it suffices to give a condition on D similar to that of
Koszul for the binary case.

Proposition 5. Let D ∈ D−(n−1)
n be a differential operator. Then, [[. , . . . , .]]D induces an

n-Lie algebra structure on �1(M) if and only if, for any a1, . . . , an−1 ∈ �1(M),

[[[. . . [D, a1], . . .], an−1],D] ∈ Dn−1.

Proof. Just observe that the condition above kills the last term in (5). �
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4. n-Lie algebroids

In this section, we will construct an n-Lie algebroid on the space of 1-forms. Given an

operator D ∈ D−(n−1)
n , we consider an extension of the bracket [[. , . . . , .]]D : �1(M)× n)· · ·

×�1(M) −→ �1(M) to another one defined in �1(M)× n−1)· · · ×�1(M) × �(M), that is,
where the last argument is a differential form of any degree, with the same formula:

[[a1, . . . , an−1, b]]D = &n
D(a1, . . . , an−1, b)

∀ai ∈ �1(M), i ∈ {1, . . . , n−1}, b ∈ �(M). Although this bracket loses the skew-symmetry
property, under the condition on D given in proposition 2 it retains the fundamental identity,
in the sense that (recall (4))

&n
D(a1, . . . , an−1,&

n
D(b1, . . . , bn−1, f ))

= &n
D(&

n
D(a1, . . . , an−1, b1), b2, . . . , bn−1, f )

+ · · · + &n
D(b1, . . . , bn−1,&

n
D(a1, . . . , an−1, f ))

when f ∈ C∞(M), ai, bi ∈ �1(M), i ∈ {1, . . . , n − 1}. This will enable us to construct an
n-Lie (or Filippov) algebroid associated with D.

Indeed, the Leibniz property guarantees that [[a1, . . . , an−1, .]]D acts as a derivation on
C∞(M), that is, it belongs to�(TM): for anyf, g ∈ C∞(M), ai ∈ �1(M), i ∈ {1, . . . , n−1},

[[a1, . . . , an−1, fg]]D = f [[a1, . . . , an−1, g]]D + [[a1, . . . , an−1, f ]]Dg.

Now consider the cotangent bundle T ∗M
π−→ M . On the sections �n−1(M) =

�(�n−1(T ∗M)), we define the anchor map as

q : �n−1(M) −→ �(TM)

a1 ∧ · · · ∧ an−1 �→ q(a1 ∧ · · · ∧ an−1) = [[a1, . . . , an−1, .]]D

and extend it by linearity. Let us check that the definition makes sense: the observation above
tells us that for f, g ∈ C∞(M),

q(a1 ∧ · · · ∧ an−1)(fg) = f q(a1 ∧ · · · ∧ an−1)(g) + gq(a1 ∧ · · · ∧ an−1)(f )

and so q takes values in the right space. Note also the C∞(M)-linearity of the anchor map,
obtained as a consequence of the Leibniz property for the bracket on HomR(�(M)) and the
degree of D: if f, g ∈ C∞(M), ai ∈ �1(M), i ∈ {1, . . . , n− 1},
q(a1 ∧ · · · ∧ f ai ∧ · · · ∧ an−1)(g) = [[a1, . . . , f ai, . . . , an−1, g]]D

= [[. . . [[. . . [D, ai], . . .], f ai], . . .], g](1)

= f [[. . . [[. . . [D, a1], . . .], ai], . . .], g](1) + (−1)ai (n−i−1)

×[[. . . [[. . . [D, a1], . . .], f ], . . .], g](ai)

= f q(a1 ∧ · · · ∧ ai ∧ · · · ∧ an−1)(g)

(the term with f, g inside the brackets vanishes because |D| = −(n− 1)).
Let us now verify the conditions of the n-Lie algebroid definition. One of these is nothing

more but the property (ii) of proposition 1:

[[a1, . . . , an−1, f b]]D = f [[a1, . . . , an−1, b]]D + [[a1, . . . , an−1, f ]]Db

= f [[a1, . . . , an−1, b]]D + q(a1 ∧ · · · ∧ an−1)(f )b
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and the other one is equivalent to the fundamental identity. On the one hand we have

[q(a1 ∧ · · · ∧ an−1), q(b1 ∧ · · · ∧ bn−1)](f ) = q(a1 ∧ · · · ∧ an−1)[[b1, . . . , bn−1, f ]]D
−q(b1 ∧ · · · ∧ bn−1)[[a1, . . . , an−1, f ]]D

= [[a1, . . . , an−1, [[b1, . . . , bn−1, f ]]D]]D
−[[b1, . . . , bn−1, [[a1, . . . , an−1, f ]]D]]D

and on the other
n−1∑
i=1

q(b1 ∧ · · · ∧ [[a1, . . . , an−1, bi]]D ∧ · · · ∧ bn−1)(f )

=
n−1∑
i=1

[[b1, . . . , [[a1, . . . , an−1, bi]]D, . . . bn−1, f ]]D.

The fundamental identity equates these two expressions, so

[q(a1 ∧ · · · ∧ an−1), q(b1 ∧ · · · ∧ bn−1)](f )

=
n−1∑
i=1

q(b1 ∧ · · · ∧ [[a1, . . . , an−1, bi]]D ∧ · · · ∧ bn−1)(f ).

We summarize all this in the following result.

Theorem 6. Let D ∈ D−(n−1)
n be such that [[[. . . [D, a1], . . .], an−1],D] ∈ Dn−1, ∀ai ∈

�1(M), i ∈ {1, . . . , n− 1}. Then
(
T ∗M

π−→ M, [[. , . . . , .]]D, q
)

is an n-Lie algebroid.

Remark 7. Given an operator D as in the previous proposition, any isomorphism L :
T ∗M −→ TM (for example, the canonical ones associated to Riemannian, Poisson
or symplectic manifolds) induces the corresponding n-Lie algebroid on

(
TM

π−→
M, [[. , . . . , .]]D̃, q

)
, where D̃ = L̃ ◦D ◦ L̃−1 and L̃ is the extension of L as a homomorphism

of exterior algebras.

5. The canonical n-Lie algebroid associated with a Nambu–Poisson manifold

Our goal in this section is to construct a basic example of n-Lie algebroid, and we shall
obtain a result similar to that for Poisson manifolds (namely, that each Poisson manifold has
a canonical Lie algebroid structure associated with it) for the n-ary case, i.e each n-Poisson
(Nambu–Poisson) manifold has a canonically associated n-Lie algebroid.

Let (M, {. , . . . , .}) be a Nambu–Poisson manifold. The Leibniz property for {. , . . . , .}
tells us that we can express it through a n-multivector P ∈ �(�nTM) (called the Nambu–
Poisson multivector) such that, for any f1, . . . , fn ∈ C∞(M):

{f1, . . . , fn} = Pf1...fn = idfn∧···∧df1P.

Let us translate the fundamental identity for {. , . . . , .} in terms of P . Consider a
Hamiltonian vector field, which in this case will have the form

Pf1...fn−1 ∈ X (M)

and let us compute the Lie derivative of P ∈ �(�nTM), LPf1 ...fn−1
P , which is a tensor of the

same type of P and, accordingly, will act on n functions g1, . . . , gn ∈ C∞(M):(
LPf1 ...fn−1

P
)
(g1, . . . , gn)
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= LPf1 ...fn−1
(Pg1,...,gn )−

n∑
i=1

P
(
g1, . . . ,LPf1 ...fn−1

gi, . . . , gn

)

= LPf1 ...fn−1
({g1, . . . , gn})−

n∑
i=1

{g1, . . . ,LPf1 ...fn−1
gi, . . . , gn}

= {f1, . . . , fn−1, {g1, . . . , gn}} −
n∑
i=1

{g1, . . . , {f1, . . . , fn−1, gi}, . . . , gn}.

Thus, the fundamental identity for the n-bracket {. , . . . , .}, translates into

LPf1 ...fn−1
P = 0 ∀fi ∈ C∞(M) i ∈ {1, . . . , n− 1}.

Now, this Lie derivative is nothing but the Schouten–Nijenhuis bracket of Pf1...fn−1 and P
(taken as multivectors), so we can write

[Pf1...fn−1 , P ]SN = 0.

Knowing what the fundamental identity means in terms of P , we can construct the
promised example. In order to do this, consider the operator

D = LP ∈ D−(n−1)
n

which has the order and degree we have seen can generate Filippov brackets on 1-forms.

Remark 8. An easy computation (using that d2 = 0 and [imultivector, f ] = 0) gives

[LP , f ] = [[iP , d], f ] = [iP , [d, f ]] − (−1)2[d, [iP , f ]] = [iP , df ] = iidf P

and similarly (using here that LP and d commute)

[LP , df ] = [LP , [d, f ]] = −[d, [LP , f ]] = −[d, iidf P ] = Lidf P .

As a consequence we get the following result.

Theorem 9. For each P ∈ �(�nTM) satisfying [Pf1...fn , P ]SN = 0 (for all fi ∈ C∞(M),
i ∈ {1, . . . , n − 1}), the operator D = LP ∈ D−(n−1)

n induces an n-Lie bracket on 1-forms,
and so each Nambu–Poisson bracket on functions has an associated n-Lie bracket on �1(M).

Proof. By Leibniz property, we only need to check that

[LP , [[. . . [[LP , a1], a2], . . .], an−1]] ∈ Dn−1

when the a′
i s are of the formf ∈ C∞(M), df ∈ �1(M) (in fact, we will see that this expression

vanishes). Now, we can distinguish three different cases.
1st case: there are at least two functions among the ai (i ∈ {1, . . . , n− 1}).
Rearrange the factors to get

[LP , [[. . . [[[LP , f1], f2], df3], . . .], dfn−1]]

and then compute, having in mind the previous remark,

[LP , [[. . . [[[LP , f1], f2], df3], . . .], dfn−1]] = [[. . . [[iidf P , f2], df3], . . .], dfn−1] = 0.

2nd case: there is exactly one function among the ai (i ∈ {1, . . . , n− 1}).
This time, rearrange to

[LP , [[[. . . [[LP , df1], df2], . . .], dfn−2], fn−1]]

= [LP , [[[. . . [L
idf1

P
, df2], . . .], dfn−2], fn−1]]

= · · · = [LP , [Lidfn−2∧···∧df1P
, fn−1]] = [LP , [LPf1 ...fn−2

, fn−1]]

= [LP , iidfn−1Pf1 ...fn−2
] = [LP , iPf1 ...fn−1

] = i[Pf1 ...fn−1 ,P ]SN = 0.
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3rd case: there is no function among the ai (i ∈ {1, . . . , n− 1}).
Here, all we have are exact 1-forms, and then

[LP , [[. . . [[LP , df1], df2], . . .], dfn−1]]

= [LP , [[. . . [L
idf1

P
, df2], . . .], dfn−1]]

= · · · = [LP ,Lidfn−1∧···∧df1P
] = [LP ,LPf1 ...fn−1

] = L[Pf1 ...fn−1 ,P ]SN = 0.

�

Corollary 10. Let (M, {. , . . . , .}) be a Nambu–Poisson manifold and P ∈ �(�nTM) the

induced Nambu–Poisson tensor. Then
(
T ∗M

π−→ M, [[. , . . . , .]]LP
, q

)
constructed as above

is an n-Lie algebroid.

6. Nambu–Poisson structures induced by differential operators

We have just seen how to construct Filippov algebroids from Nambu–Poisson structures. Next,
we would like to obtain examples of the later ones also by using differential operator techniques.

Given an operator D ∈ D−(n−1)
n and a function f ∈ C∞(M), we define a bracket

[[. , . . . , .]]Df
: �1(M)× n−1· · · ×�1(M) −→ C∞(M)

(a1, . . . , an−1) �−→ [[a1, . . . , an−1]]Df
= &n

D(a1, . . . , an−1, f )

and from it, an n-bracket on functions

{. , . . . , .}D : C∞(M)× n· · · ×C∞(M) −→ C∞(M)

(f1, . . . , fn) �−→ {f1, . . . , fn}D = [[df1, . . . , dfn−1]]Dfn
= &n

D(df1, . . . , dfn−1, fn).

This bracket is linear in each argument and that it has the Leibniz property. The following
result, specifies other features.

Proposition 11. Let D ∈ D−(n−1)
n and {. , . . . , .}D as above. Then:

(i) {. , . . . , .}D is skew-symmetric if and only if Symbn([D, d]) = 0.
(ii) {. , . . . , .}D verifies the fundamental identity if and only if for all a1, . . . , an−1 ∈ �1(M),

then [D, [[. . . [D, a1], . . .], an−1]] ∈ Dn−1.

Proof. Condition (ii) is known from section 1 (see (5)). For the condition (i) to be understood,
we only need to check it. First, note that if i < n−1, then clearly {f1, . . . , fi, fi+1, . . . , fn} =
−{f1, . . . , fi+1, fi, . . . , fn}. Next, consider any differential operator + and f, g ∈ C∞(M);
we have

[[+, df ], g] = [[+, [d, f ]], g]

= [[[+, d], f ], g] + (−1)+[d, [[+, f ], g]] − [[+, f ], dg]

thus, if we take+ = [[. . . [D, df1], . . .], dfn−2] ∈ D−1
2 (�(M)), f = fn−1, g = fn ∈ C∞(M)

it results [[+, f ], g] = 0, and so

[[+, dfn−1], fn] = [[[+, d], fn−1], fn] − [[+, fn−1], dfn]

= [[[+, d], fn−1], fn] − [[+, dfn], fn−1]. (7)

It is the first term on the last member which destroys skew symmetry, but writing

+k−1 = [[. . . [D, df1], . . .], dfk−1]
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we see that

[+k, d] = [[[. . . [D, df1], . . .], dfk], d] = [[[. . . [D, df1], . . .], [d, fk]], d]

= [[+k−1, [d, fk]], d] = −(−1)+k−1 [dfk, [+k−1, d]]

= [[+k−1, d], dfk] (8)

thus, we have from (7) and (8),

{f1, . . . , fn−1, fn} = [[[. . . [D, df1], . . .], dfn−1], fn](1)

= [[[. . . [[D, d], df1], . . .], fn−1], fn](1)− [[[. . . [D, df1], . . .], dfn], fn−1](1)

= [[[. . . [[D, d], df1], . . .], dfn−1], fn](1)− {f1, . . . , fn, fn−1}.
�

Corollary 12. Let D ∈ D−(n−1)
n be such that [D, [[. . . [D, a1], . . .], an−1]] ∈ Dn−1, for all

a1, . . . , an−1 ∈ �1(M), and Simbn([D, d]) = 0. Then, the induced bracket on functions
{. , . . . , .}D , is a Nambu–Poisson bracket.

Now, we prove that any Nambu–Poisson bracket comes from an operator of this kind.

Theorem 13. Let {. , . . . , .} be a Nambu–Poisson bracket on C∞(M)× n· · · ×C∞(M). Then,
it coincides with {. , . . . , .}D , where D = LP and P is the Nambu–Poisson n-multivector
associated with {. , . . . , .}.
Proof. If f1, . . . , fn ∈ C∞(M), we have

{f1, . . . , fn}LP
= [[df1, . . . , dfn−1, fn]]LP

= [[[. . . [LP , df1], . . .], dfn−1], fn](1) = Lidfn−1∧···∧df1P
fn

= (idfn−1∧···∧df1P)(dfn) = idfn(idfn−1∧···∧df1P) = P(df1 ∧ · · · ∧ dfn−1 ∧ dfn)

= {f1, . . . , fn}.
�

Our last result shows that, in a sense, the operators of the form D = LP are the unique
ones for which {. , . . . , .}D is a Nambu–Poisson structure. We will need some technical results
first.

Lemma 14 (of localization). Let p : E −→ M be a vector bundle with finite rank over a
manifold M . Let E be the space of its sections. Then, given a linear map A : E −→ C∞(M),
there exists a (necessarily unique) section α of the dual vector bundle E∗ −→ M such that,
for any point x ∈ M and any element X in E ,

A(X)(x) = α(X(x))

if and only if A is C∞(M)-linear.

(This is a standard result in differential geometry, see e.g. [War 71, pp. 64–5]).

Definition 15. A differential operator D (of any order and degree) is said to be tensorial if,
for all f ∈ C∞(M),

[D, f ] = 0.

Lemma 16. Let D ∈ D−(n−1)
n be a tensorial operator. Then, there exist unique A ∈

�(�n−1TM)),+ ∈ �(�nTM ⊗ T ∗M) such that

D = iA + i+.
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Proof. As a consequence of [D, f ] = 0, we have that for all α ∈ �n−1(M),D(f α) = fD(α),
so D|�n−1(M) : �n−1(M) −→ C∞(M) is C∞(M)-linear and—by the localization lemma—it
defines an A ∈ �(�n−1TM)) such that

D|�n−1(M) = iA|�n−1(M).

Next, we study what happens when D − iA acts on n-forms. Just because D and iA are
so, D − iA is a tensorial operator, and then

+̃ : �1(M)× n)· · · ×�1(M)× X (M) −→ C∞(M)

(a1, . . . , an,X) �−→ ((D − iA)(a1 ∧ · · · ∧ an))(X)

is C∞(M)-linear in all its arguments. Then, again by the localization lemma, ∃+ ∈
�(�nTM ⊗ T ∗M) such that

i+|�n(M) = D − iA|�n(M).

Now, acting on any k-form, with k < n − 1, any of the previous operators gives 0 (note
the degrees); thus, we have D = iA + i+. �
Proposition 17. Given D ∈ D−(n−1)

n , then Symbn([D, d]) = 0 if and only if Symbn(D) =
Symb(LN) for some N ∈ �(�nTM).

Proof. We will follow the ideas presented in [Bel-Mon 94], where the authors consider the
n = 2 case.

If Symbn(D) = Symb(LN), where N ∈ �(�nTM), we can write D = LN + D̃, with
D̃ ∈ Dn−1, and then, as LN commutes with d,

[D, d] = [D̃, d] ∈ Dn−1

so Symbn([D, d]) = 0.
For the converse, consider an arbitrary D ∈ D−(n−1)

n , neither necessarily verifying
Symbn([D, d]) = 0, nor being tensorial. Let us determine its non-tensorial part by taking
brackets with a function f ∈ C∞(M). We have [D, f ] ∈ D−(n−1)

n−1 , so ∃Hf ∈ ��n−1(TM)

such that [D, f ] = iHf
. Now, the mapping

H : C∞(M) → ��n−1(TM)

f �−→ Hf

is a derivation: if f, g ∈ C∞(M), by the Leibniz property for the bracket [. , .],

iHfg
= [D, fg] = f [D, g] + g[D, f ] = f iHg

+ giHf
.

Now, to each derivation from C∞(M) to ��n−1(TM), we can assign a Q ∈ �(TM ⊗
�n−1(TM)) in the following manner. Let

Q̃ : ��n−1(T ∗M) → �(TM)

(a1, . . . , an−1) �−→ Q̃(a1, . . . , an−1) : C∞(M) → C∞(M)

f �−→ iHf
(a1 ∧ · · · ∧ an−1) = [D, f ](a1 ∧ · · · ∧ an−1)

and note that Q̃(a1, . . . , an−1) ∈ �(TM) as a consequence of H being a derivation. Also, we
have iHf

(ga1 ∧ · · · ∧ an−1) = giHf
(a1 ∧ · · · ∧ an−1), so Q̃(a1, . . . , an−1) is C∞(M)-linear

and there exists a Q ∈ �(TM ⊗�n−1(TM)) such that

Q(df, a1, . . . , an−1) = iQ̃(a1,...,an−1)
df = [D, f ](a1 ∧ · · · ∧ an−1).

Let us study under what conditions this Q is skew symmetric. It suffices to only consider
the case when ai = dfi ∈ �1(M), i ∈ {2, . . . , n}, f = f1 ∈ C∞(M), and to observe that

Q(df1, df2, . . . , dfn) = [[. . . [[D, f1], df2], . . .], dfn](1) = &n
D(f1, df2, . . . , dfn).
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Now, from the proof of proposition 10, we know that this is skew symmetric if and only
if Symbn([D, d]) = 0. So, under this condition we can take

N = Q ∈ �(�n(TM)).

In the last step, we check that, for any f ∈ C∞(M), [D − LN, f ] is a tensorial operator.
As [D − LN, f ] ∈ D−(n−1)

n−1 and a differential operator is characterized by its action on forms
of degree less or equal to its order, we only need to consider the case of an (n− 1)-form. So,
for gi ∈ C∞(M), i ∈ {1, n− 1}, we compute

[D − LN, f ](dg1 ∧ · · · ∧ dgn−1)

= [D, f ](dg1 ∧ · · · ∧ dgn−1)− [LN, f ](dg1 ∧ · · · ∧ dgn−1)

= Q(df, dg1, . . . , dgn−1)− iidf N (dg1 ∧ · · · ∧ dgn−1)

= Q(df, dg1, . . . , dgn−1)−N(df, dg1, . . . , dgn−1) = 0.

Thus, D − LN is a tensorial operator, and applying the previous lemma, ∃A ∈
�(�n−1TM)),+ ∈ �(�nTM ⊗ T ∗M) such that

D = LN + iA + i+

and then [D, d] = LA + L+, with LA ∈ D−(n−2)
n−1 and L+ ∈ D−(n−2)

n . If Symbn([D, d]) = 0,
then also L+ = 0, so + = 0 and Symbn(D) = Symb(LN). �
Remark 18. For n = 2, this result appeared in [Bel 95].

Corollary 19. Given D ∈ D−(n−1)
n , then [D, d] = 0 if and only if D = LN for some

N ∈ �(�nTM).

Proof. If D = LN for some N ∈ �(�nTM), it is clear that [D, d] = 0. For the converse, we
have in the proof of the preceding proposition 0 = [D, d] = LA + L+, with LA ∈ D−(n−2)

n−1 and
L+ ∈ D−(n−2)

n , so + = 0, A = 0 and D = LN . �

7. Examples

We present here two examples of Nambu–Poisson structures with their corresponding n-Lie
algebroids. Since it is unusual to find explicit examples in the literature, we shall be rather
detailed.

7.0.1. Kepler dynamics. This example is based on [MVV 98]. It is well known that the Kepler
dynamics has five first integrals, which are given by the components of the angular momentum
and those of the Runge–Lenz vector. In action-angle coordinates J, ϕ, such integrals are
J1, J2, J3, ϕ1 − ϕ2, ϕ2 − ϕ3. Call them h1, h2, h3, h4, h5 respectively. In the space M with
coordinates J, ϕ, consider the Nambu–Poisson 6-vector

P = 2mk2

(J1 + J2 + J3)3

∂

∂J1
∧ ∂

∂J2
∧ ∂

∂J3
∧ ∂

∂ϕ1
∧ ∂

∂ϕ2
∧ ∂

∂ϕ3
(9)

and the induced Nambu–Poisson bracket

{f1, f2, f3, f4, f5, f6} = P(df1 ∧ df2 ∧ df3 ∧ df4 ∧ df5 ∧ df6).

It is immediate to prove that the Hamiltonian vector field corresponding to the multi-
Hamiltonian (h1, h2, h3, h4, h5) is

Xh1,h2,h3,h4,h5 = 2mk2

(J1 + J2 + J3)3

(
∂

∂ϕ1
+

∂

∂ϕ2
+

∂

∂ϕ3

)
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so that Xh1,h2,h3,h4,h5(g) = {h1, h2, h3, h4, h5, g} for all g ∈ C∞(M). Now, we can describe
the associated Filippov algebroid. The vector bundle is p : �1(T ∗M) −→ M , the Filippov
bracket on the space of sections �1(M) is given by LP , where P is the Nambu–Poisson
6-vector (9); explicitly, we would write for df1, df2, df3, df4, df5, df6 ∈ �1(M)

[[df1, df2, df3, df4, df5, df6]]LP

= [[[[[[LP , df1], df2], df3], df4], df5], df6](1)

= Lidf1∧df2∧df3∧df4∧df5P
(df6)

= d(P (df1 ∧ df2 ∧ df3 ∧ df4 ∧ df5 ∧ df6))

= d{f1, f2, f3, f4, f5, f6}.
Finally, the anchor map q : �5(M) −→ �(TM), acts as

q(df1 ∧ df2 ∧ df3 ∧ df4 ∧ df5) = [[df1, df2, df3, df4, df5, .]]LP

thus

q(df1 ∧ df2 ∧ df3 ∧ df4 ∧ df5)(g) = {f1, f2, f3, f4, f5, g}.

7.0.2. Bi-Hamiltonian systems. This example is adapted from [Mag-Mag 91], and it is a
system of the Calogero–Moser type. Consider two particles on a line, interacting through a
potential proportional to the squared power of their distance

V = 1

(x2 − x1)2
.

The Newtonian equations of motion are readily derived:

ẍ1 = − 2

(x2 − x1)3

ẍ2 = 2

(x2 − x1)3
.

(10)

These equations can also be obtained from a Hamiltonian description. It suffices to take the
Hamiltonian

H = 1

2
(p2

1 + p2
2) +

1

(x2 − x1)2

and the canonical symplectic form on the phase space T ∗
R

2, with coordinates (x1, x2, p1, p2):

� = dx1 ∧ dp1 + dx2 ∧ dp2.

In fact, this system is a bi-Hamiltonian one. We could consider, along with H , another
conserved quantity: the total momentum

K = p1 + p2

and the symplectic form

7 = (p1 + α)dx1 ∧ dp1 + (p2 + α)dx2 ∧ dp2

+βdx1 ∧ dx2 + α(dx2 ∧ dp1 + dx1 ∧ dp2) + γ dp1 ∧ dp2

where

α = p1 − p2

4 + (x1 − x2)2(p1 − p2)2

β = 2(x1 − x2)

4 + (x1 − x2)2(p1 − p2)2

γ = 2

(x1 − x3)3
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and we would obtain the same evolution equations (10). What we are now going to do, is to
construct a Nambu–Poisson system from this bi-Hamiltonian one. For this purpose, it is better
to introduce new coordinates for the position of the particles:

z = x1

r = x2 − x1

It is straightforward to prove that the Hamiltonians now adopt the form

H = p2
z + prpz +

1

2
p2
r +

1

r2

K = 2pz + pr

(the expressions for the symplectic forms are, of course, also changed; for example now we
have

� = 2dz ∧ dpz + dz ∧ dpr + dr ∧ dpz + dr ∧ dpr).

Consider the Nambu–Poisson multivector

P = ∂

∂r
∧ ∂

∂pz
∧ ∂

∂pr

associated with which we have a Nambu–Poisson bracket {. , . . . , .}, so we can compute the
Hamiltonian vector field with respect to the 2-Hamiltonian (H,K): this is the vector field

XH,K = −pr ∂
∂r

+
2

r3

∂

∂pz
− 4

r3

∂

∂pr

as can be readily seen by evaluating {H,K, g} = P(dH∧dK∧dg) for an arbitrary function g.
Then, it is quite easy to show the Filippov algebroid corresponding to this structure. It is given
by the vector bundle p : �1(T ∗M) −→ M , and as in the previous example, the bracket on the
space of sections is determined by LP :

[[df1, df2, df3]]LP
= [[[LP , df1], df2], df3](1)

= Lidf1∧df2P
(df3)

= d(P (df1 ∧ df2 ∧ df3))

= d{f1, f2, f3}
and the anchor map q : �2(M) −→ �(TM), acts as

q(df1 ∧ df2) = [[df1, df2, .]]LP

where

q(df1 ∧ df2)(g) = {f1, f2, g}.
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